Compiled by: M. Usman Rafiq (M.PHIL Mathematics), KIPS College Samundri. 03090752390 <u>Important Short Questions Mathematics from Past Papers for Inter Part-I</u>

Chapter#01 (Number Systems)

- Let $z \in C$, show that $\overline{\overline{z}} = z$ i. ii. Find multiplicative inverse of i - 2iSimplify: (2,6). (3,7) iii. State and prove golden rule of fraction. iv. State golden rule of fraction and rule for quotient of fractions. v. Find multiplicative inverse of $(\sqrt{2}, -\sqrt{5})$ vi. Prove that the sum as well as product of two conjugate complex number is real. vii. Simplify: $(a + bi)^{-2}$ viii. State trichotomy property of real number. ix. Express $\frac{i}{1+i}$ in the form of a + bi. х. Express the complex number $1 + i\sqrt{3}$ in polar form. xi. Whether closed or not with respect to addition and multiplication is $\{1\}$? xii. Simplify: $(-1)^{\frac{21}{2}}$ xiii. Show that $z\overline{z} = |z|^2$ xiv. Find the multiplicative inverse of -3 - 5iXV. Does the set $\{1, -1\}$ possess? Closure property with respect to addition and subtraction. xvi. Find the difference and product of two complex numbers (8,9) and (5,-6)xvii. Simplify by justifying each step mentioning each property: xviii. Factorize $9a^2 + 16b^2$ xix. Show that $\forall z \in C$, $z^2 + z^{-2}$ is a real number. XX. Simplify: $(-i)^{19}$ xxi. Simplify: *i*¹⁰¹ xxii. Separate into real and imaginary parts $\frac{i}{1+i}$ xxiii. Find multiplicative inverse of $(\sqrt{2}, -\sqrt{5})$ xxiv. Prove that $\overline{z} = z$ iff z is real. xxv. Show that $\forall z \in C$; $z^2 + \overline{z}^2$ is a real number. xxvi. Show that $\forall z \in C$; $(z - \overline{z})^2$ is a real number. xxvii. Chapter#02 (Sets, Functions and Groups) If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$ i. Write the descriptive and tabular form of set $A = \{x: x \in E \land 4 \le x \le 10\}$ ii. Find the converse and inverse of $q \rightarrow p$ iii. Define group. iv. If $C = \{a, b, c, d\}$, find P(C). v. Let U = the set of English alphabet, $A = \{x | x \text{ is a vowel}\}$, $B = \{y | y \text{ is consonant}\}$ verify DE Morgan's law vi. for these sets. Construct the truth table for $\sim (p \rightarrow q) \leftrightarrow (p \land \sim q)$ vii. Find converse and inverse of $\sim p \rightarrow \sim q$ viii. Write $A = \{x | x \in 0 \land 3 < x < 12\}$ in descriptive and tabular form. ix. Show that subtraction is non-commutative on 'N'. х. If $U = \{1, 2, 3, 4, 5, \dots, 20\}$ and $A = \{1, 3, 5, \dots, 19\}$, verify $A \cup A' = U$ xi.
 - xii. Show that the statement $\sim (p \rightarrow q) \rightarrow p$ is a tautology.
 - xiii. Find inverse of the given relation: $R = \{(x, y) | y^2 = 4ax, x \ge 0\}$
 - xiv. Write the inverse of the relation $\{(x, y) | y = 2x + 3, x \in R\}$ is it inverse a function or not.
 - xv. Write the inverse and contrapositive of $\sim q \rightarrow \sim p$.

- xvi. What is the difference between $\{a, b\}$ and $\{\{a, b\}\}$?
- xvii. Write down the power set of {9,11}

.

- xviii. Write down the power set of $\{+, -, \times, \div\}$
- xix. Show that the set $\{1, w, w^2\}$, when $w^3 = 1$, is an Abelian group w.r.t ordinary multiplication.
- xx. Show that the set $\{1, -1, i, -i\}$, is an Abelian group w.r.t ordinary multiplication.
- xxi. Prepare a table of addition of the elements of the set of residue classes modulo 4.

Chapter#03 (Matrices and Determinants)

i. If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}$$
 show that $A^{4} = I_{2}$
ii. If $A = \begin{bmatrix} 2 & 3 & -2 \\ -1 & 1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -3 & 1 \\ -3 & -1 \end{bmatrix}$ then solve $3X - 2A = B$ for X .
iii. Define minor and cofactor of element of a matrix.
iv. If $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$, show that $A - (A)^{d}$ is skew Hermitian.
v. Evaluate $\begin{vmatrix} 1 & 2 & -3 \\ -1 & 3 & 4 \end{vmatrix}$
vi. If $A = \begin{bmatrix} 2 & i \\ i & -1 \end{vmatrix}$, the find A^{-1}
vi. If $A = \begin{bmatrix} 1 & 0 \\ a & b \end{bmatrix}$, $A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the value of a and b .
viii. Find x and y if $\begin{bmatrix} X+3 & 3 \\ -3 & 3y - 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$
iv. If A and B are non-singular matrices, then show that $(AB)^{-1} = B^{-1}A^{-1}$
x. Let $\begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & -1 \\ -1 & 3 & 2 \end{bmatrix}$, show that $A + A^{t}$ is symmetric.
xi. Find the matrix A if, $\begin{bmatrix} 5 & -1 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 3 & -7 \\ 0 & 7 & 2 \end{bmatrix}$
xii. If $A = \begin{bmatrix} a_{1j} \end{bmatrix}_{3\times 4^{t}}$ then sow that $I_{2}A = A$
xiii. Without expansion verify that $\begin{bmatrix} A & \beta + \gamma & 1 \\ \beta & \gamma + a & 1 \\ \gamma & \alpha + \beta & 1 \end{bmatrix} = 0$
xv. Without expansion show that $\begin{bmatrix} \frac{a}{2} & \frac{b}{1} \\ \frac{a}{2} & \frac{b}{1} \\ \frac{a}{2} & \frac{b}{1} \end{bmatrix} = 0$
xvi. Without expansion show that $\begin{bmatrix} 6 & 7 & 8 \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{bmatrix} = 0$
xvii. Find the multiplicative inverse of $A = \begin{bmatrix} 5 & -3 \\ 3 & -1 \\ 1 & m & m^{2} \end{bmatrix} = \begin{bmatrix} 1 & 1^{2} & 1^{3} \\ 1 & m^{2} & m^{3} \end{bmatrix}$
xviii. Find inverse of $\begin{bmatrix} -2 & 3 \\ -4 & 5 \\ 2 & 3 & 4 \end{bmatrix}$
xviii. Without expansion show that $\begin{bmatrix} 6 & 7 & 8 \\ 2 & 3 & 4 \end{bmatrix} = 0$
xix. If $A = \begin{bmatrix} 1 & 2 \\ a & B \\ a & a & a + l \\ a & a & a + l \end{bmatrix} = l^{2}(3a + l)$
xx. If $A = \begin{bmatrix} 1 & 2 \\ a \\ 2 \\ b \\ c \\ c \end{bmatrix}$, $A^{2} = \begin{bmatrix} 1 & 0 \\ 1 \\ 1 & 1 & 1 \\ a \\ a & a & a + l \end{bmatrix}$
xxii. Show that $\begin{vmatrix} a & b & a \\ a & b & c \\ a & b \\ c & c \\ c &$

xxiii. Show that $\begin{vmatrix} a + \lambda & b & c \\ a & b + \lambda & c \\ a^2 & b & c + \lambda \end{vmatrix} = \lambda^2 (a + b + c + \lambda)$ Chapter#04 (Quadratic Equations) i. Solve $x^2 + 7x + 12 = 0$ by factorization. ii. Discuss the nature of the roots of equation $2x^2 + 5x + 1 = 0$ iii. Find two consecutive numbers, whose product is 132. iv. Find k if $x^3 + kx^2 - 7x + 6 = 0$ reminder has -4 , when divided by $x - 2$. v. If α, β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
i. Solve $x^2 + 7x + 12 = 0$ by factorization. ii. Discuss the nature of the roots of equation $2x^2 + 5x + 1 = 0$ iii. Find two consecutive numbers, whose product is 132. iv. Find k if $x^3 + kx^2 - 7x + 6 = 0$ reminder has -4, when divided by $x - 2$. v. If α, β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
i. Solve $x^2 + 7x + 12 = 0$ by factorization. ii. Discuss the nature of the roots of equation $2x^2 + 5x + 1 = 0$ iii. Find two consecutive numbers, whose product is 132. iv. Find k if $x^3 + kx^2 - 7x + 6 = 0$ reminder has -4, when divided by $x - 2$. v. If α, β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
ii. Discuss the nature of the roots of equation $2x^2 + 5x + 1 = 0$ iii. Find two consecutive numbers, whose product is 132. iv. Find k if $x^3 + kx^2 - 7x + 6 = 0$ reminder has -4, when divided by $x - 2$. v. If α, β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
iii. Find two consecutive numbers, whose product is 132. iv. Find k if $x^3 + kx^2 - 7x + 6 = 0$ reminder has -4, when divided by $x - 2$. v. If α, β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
iv. Find k if $x^3 + kx^2 - 7x + 6 = 0$ reminder has -4, when divided by $x - 2$. v. If α, β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
v. If α , β are roots of $5x^2 - x + 2 = 0$. find $\frac{3}{2} + \frac{3}{2}$	
$\alpha \cdot \beta$	
vi. Find three cube roots of unity.	\frown
vii. If α , β are roots of $5x^2 - x - 2 = 0$, find $\frac{3}{\alpha} + \frac{3}{\beta}$	
viii. Show that roots of equation $(p + q)x^2 - px - q = 0$, are rational.	
ix. Find roots of equation of quadratic formula $(x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a)$	= 0
x. Find the four fourth roots of 625.	
xi. Find the condition that $\frac{a}{(x-a)} + \frac{b}{(x-b)} = 5$, may have roots equal in magnitude but opposite in sign	a.
xii. Evaluate $(1 + w + w^2)^\circ$.	1-
xiii. When the polynomial $x^2 + 2x^2 + kx + 4$ is divided by $x - 2$, the reminder is 14. Find value of	к.
xiv. If α, β are roots of $3x^2 - 2x + 4 = 0$, then find the value $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.	
xv. Use the reminder theorem to find reminder when first polynomial is divided by second polynomial $u^2 + 2u + 7$, $u + 1$	al
XVI. $x^2 + 3x + 7$, $x + 1$ Find the equation that one root of the equation $x^2 + nx + q = 0$ is multiplicative inverse of the	other
xviii. Discuss the nature of roots of the equation $2x^2 + 5x - 1 = 0$	Julei.
xix. Solve the equation by completing square $x^2 + 4x - 1085 = 0$	
xx. Prove that $\left(\frac{1+\sqrt{-3}}{2}\right)^9 + \left(\frac{1-\sqrt{-3}}{2}\right)^9 = -2$	
xxi. When $x^4 + 2x^3 + kx^2 + 3$ id divided by 'x - 2'; the reminder is 1, find the value of k.	
xxii. If α , β are roots $x^2 - px - p - c = 0$, prove that $(1 + \alpha)(1 + \beta) = 1 - c$	
<u>Chapter#05 (Partial Fractions)</u>	
1. Define rational fraction. $r^2 + r + 1$	
ii. Resolve into partial fraction $\frac{x+x+1}{(x+2)^3}$	
iii. $\frac{3x^2+1}{x-2}$, Is an improper fraction convert into proper fraction?	
iv. Define partial fraction resolution.	
v. Write only partial fractions form of $\frac{x^2+1}{x^3+1}$, without finding constants.	
vi. Resolve $\frac{7x+5}{(x+3)(x+4)}$ into partial fraction.	
vii. Resolve $\frac{3x-11}{(x^2+1)(x+3)}$, into partial fractions without finding constants.	
viii. Change $\frac{6x+5x-7}{2x^2-x-7}$, into proper rational fraction.	
ix. Resolve $\frac{x^2+1}{(x+1)(x-1)}$, into partial fraction.	
x. Define conditional equation and identity equation with one example.	
Chapter#06 (Sequences and Series)	
i. Define arithmetic progression.	
ii. Find three A.M's between $\sqrt{2}$ and $3\sqrt{2}$	
iii. Sum the series $2 + (1 + i) + \left(\frac{1}{i}\right) + \cdots$ to 8 terms.	
iv. Find the 9 th term of the H.P $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$,	

- vii. Find vulgar fraction equivalent to 1. 53 recurring decimal.
- viii. Find the 12th term of Harmonic sequence $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}, \dots$
- ix. Find a_8 for the sequence 1,1, -3,5, -7,9, ...
- x. Sum the series $(-3) + (-1) + 1 + 3 + \dots + a_{16}$
- xi. Find the nth term of H.P $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$, ...
- xii. Find the sum of infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$
- xiii. If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P, show that the common difference is $\frac{a-c}{2ac}$.
- xiv. Find A.M between $1 x + x^2$ and $1 + x + x^2$.
- xv. How many terms of series $-1 + (-5) + (-3) + \cdots$ amount to? 65.
- xvi. Find vulgar fraction equivalent to the recurring decimal 1. 34
- xvii. If 5 is H.M between 2 and *b* find *b*.
- xviii. Find the 13th term of the sequence x, 1,2 x, 3 2x, ...
- xix. Show that the reciprocal of the terms of the geometric sequence $a_1, a_1r^2, a_1r^4, ...$ form another geometric sequence.
- xx. If $1 + \frac{x}{2} + \frac{x^2}{4} + \cdots$ show that $x = 2(\frac{y-1}{y})$
- xxi. Find the indicated term of the sequence $1, -3, 5, -7, 9, -11, \dots, a_8$
- xxii. If $a_{n-3} = 2n 5$ find the nth term of the sequence.
- xxiii. Find the nth term of the geometric sequence if $\frac{a_5}{a_3} = \frac{4}{9}$ and $a_2 = \frac{4}{9}$
- xxiv. Find A, G, H and verify that A > G > H, (G > 0) if a = 2 and b = 8
- xxv. Find the next two terms of 1,3,7,15,31, ...
- xxvi. If $S_n = n(2n 1)$, then find the series.
- xxvii. Find G.M between -2i and 8i.
- xxviii. Find vulgar fraction equivalent to the recurring decimal $0.\dot{7}$
- xxix. If the numbers $\frac{1}{k} + \frac{1}{2k+1}$ and $\frac{1}{4k-1}$ are in harmonic sequence find k.
- xxx. Find the nth term of the sequence $\left(\frac{4}{3}\right)^2$, $\left(\frac{7}{3}\right)^2$, $\left(\frac{10}{3}\right)^2$, ...
- xxxi. Determine whether -19 is the term of the A.P 17,13,9, ... or not.
- xxxii. If 5,8 are two A.Ms between a and b, find a and b.
- xxxiii. If $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in G.P. show that the common ratio is $\pm \sqrt{\frac{a}{c}}$
- xxxiv. If both x and y are positive distinct real numbers, show that the geometric mean between x and y is less than their arithmetic mean.

xxxv. If
$$1 + 2x + 4x^2 + 8x^3 + \cdots$$
 show that $x = (\frac{y-1}{2y})$

xxxvi. If
$$y = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \cdots$$
 and if $0 < x < 2$, show that $x = \frac{2y}{1+y}$

xxxvii

ii. If
$$y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \cdots$$
 and if $0 < x < \frac{3}{2}$, show that $x = \frac{3y}{2(1+y)}$

Chapter#07 (Permutation, Combination, and Probability)

- i. Evaluate $\frac{8!}{4!2!}$
- ii. Define sample space.
- iii. Find the number of diagonals of a 6 –sided figure.
- iv. Evaluate $\frac{10!}{7!}$
- v. Find the value of n if ${}^{n}C_{r} = \frac{12 \times 11}{2!}$
- vi. Evaluate $\frac{8!}{c!}$
- vii. How many signals can be formed with 4-different flags when any number of them are to be used at a time?
- viii. Find the value of n, ${}^{n}C_{5} = {}^{n}C_{4}$
- ix. How many arrangements of the letters of the word 'MATHEMATICS', taken all together, can be made?

- x. There are 5 green and 3 red balls in a box. One ball is taken out, find the probability that ball taken out is red.
- ^{xi.} Find the value of n when ${}^{n}P_{5}:{}^{n}P_{3} = 9:1$
- ^{xii.} Find the value of n when ${}^{n}P_{2} = 30$
- xiii. A die is rolled. What is the probability that the dots on the top are greater than 4.
- xiv. If the sample space = $\{1, 2, 3, ..., 9\}$, events $A = \{2, 4, 6, 8\}$, and $B = \{1, 3, 5, \}$, find $P(A \cup B) = ?$
- xv. Define fundamental principle of Counting.

<u>Chapter#09 (Fundamentals of Trigonometry)</u>

- i. Define radian.
- ii. Express the angle $75^{\circ}6'30''$ in radian measure.

iii. If $cos\theta = -\frac{\sqrt{3}}{2}$ and the terminal arm of the angle is in III quadrant, find the value of $sin\theta$ and $tan\theta$.

- iv. Verify that $cos2\theta = 2cos^2\theta 1$ when $\theta = 30^o$
- v. Find *l*, when $\theta = 65^{\circ}20'$, r = 18mm
- vi. Verify that $cos2\theta = cos^2\theta sin^2\theta$ when $\theta = 30^o, 45^o$
- vii. Prove the identity $cot^4\theta + cot^2\theta = cosec^4\theta cosec^2\theta$
- viii. For $\theta = -\frac{71}{6}\pi$, find the value of $sin\theta$ and $cos\theta$.
- ix. Prove the identity $\frac{2tan\theta}{1+tan^2\theta} = 2sin\theta cos\theta$
- x. Find θ , when l = 1.5cm; r = 2.5cm
- xi. Verify $sin60^{\circ}cos30^{\circ} cos60^{\circ}sin30^{\circ} = sin30^{\circ}$
- xii. Find *l*, when $\theta = \pi$ radian, r = 6cm
- xiii. Verify $sin^2 \frac{\pi}{6} + sin^2 \frac{\pi}{3} + tan^2 \frac{\pi}{4} = 2$
- xiv. What is the circular measure of angle between the hands of watch at 4 O'clock?
- xv. Find x if $tan^2 45^o cos^2 45^o = x \cdot sin 45^o \cos 45^o tan 60^o$
- xvi. Prove that $sec^2\theta cosec^2\theta = tan^2\theta cot^2\theta$.
- xvii. Prove that $2\cos^2\theta 1 = 1 2\sin^2\theta$
- xviii. Prove that $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
- xix. Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$.
- xx. Define the angle in standard position.
- xxi. Define co-terminal angle or general angle.
- xxii. Verify $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{2} : \sin^2 1 : 2 : 3 : 4$

Chapter#10 (Trigonometric Identities Sum and Difference of Angles)

- i. Without using tables, write the value of $cos315^{\circ}$ and $sin540^{\circ}$
- ii. If α , β and γ are the angles of a triangle ABC, then prove that $\tan(\alpha + \beta) + tan\gamma = 0$
- iii. Prove that $sin(\alpha + \beta) sin(\alpha \beta) = sin^2\alpha sin^2\beta$
- iv. Show that $\cos(\alpha + \beta) \cos(\alpha \beta) = \cos^2\beta \sin^2\alpha$
- v. Prove that $cot\alpha tan\alpha = 2cot2\alpha$
- vi. Prove that $\frac{\sin 3x \sin x}{\cos x \cos 3x} = \cot 2x$

vii. Show that
$$cos 330^{\circ} sin 600^{\circ} + cos 120^{\circ} sin 150^{\circ} = -1$$

- viii. Prove that $sin2\alpha = 2sin\alpha cos\alpha$
- ix. Express $2 \sin 7\theta \sin 2\theta$ as a sum or difference.
- x. Prove that $sin(180^{\circ} + \alpha) sin(90^{\circ} \alpha) = -sin\alpha cos\alpha$

xi. Prove that
$$\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$$

- xii. Prove the identity $\frac{\sin 3\theta}{\sin \theta} \frac{\cos 3\theta}{\cos \theta} = 2$
- xiii. If α , β and γ are the angles of a triangle *ABC*, then prove that $sin(\alpha + \beta) = sin\gamma$
- xiv. Prove that $cos(\alpha + 45^{\circ}) = \frac{1}{\sqrt{2}}(cos\alpha sin\alpha)$
- xv. Express $2\sin(3\theta)\cos\theta$ as a sum or difference.
- xvi. Without using tables, write the value of $sin(-300^{\circ})$
- xvii. Prove that $cos2\alpha = cos^2\alpha sin^2\alpha$

Show that $\frac{\sin 2\theta}{1+\cos 2\theta} = tan\theta$ xviii.

Find the distance between the points P(cosx, cosy), Q(sinx, siny)xix.

XX.

Prove that $\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$ Prove that $\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$ xxi.

Chapter#11 (Trigonometric Functions and their Graphs)

- Write the domain and range of $sin\theta$ i.
- ii. Find the period of $tan \frac{x}{2}$
- Draw the graph of y = sinx from 0 to π . iii.
- iv. What is the domain and range of y = cosx
- Find the period of $3\cos\frac{\pi}{r}$. v.
- Draw the graph of y = sin3x from $0 \le x \le 360^{\circ}$ vi.
- vii. Find the period of $sin \frac{x}{r}$
- Define period of trigonometric function. viii.
- Find the period of $tan \frac{x}{z}$ ix.
- Find the period of tan4xх.
- Find the period of cot8xxi.

Chapter#12 (Application of Trigonometry)

- A kite flying at a height of 67.2m is attached to fully stretched string inclined at an angle of 55° to the horizental. i. Find length of the string.
- In a triangle ABC if b = 95, c = 34, $\alpha = 52^{\circ}$ find a. ii.
- Find area of triangle in which a = 4.8, $\alpha = 83^{\circ}42'$, $\gamma = 37^{\circ}12'$ iii.
- At the top of the cliff 80m high, the angle of depression of the boat is 12° , how far the boat from the cliff is. iv.
- Find area of triangle in which b = 21.6, c = 30.2, $\alpha = 52^{\circ}40'$, v.
- Find measure of greatest angle of sides of tringle are a = 16, b = 20, c = 33vi.
- Find area of triangle in which b = 37, c = 45, $\alpha = 30^{\circ}50'$ vii.

viii. Prove that
$$r_1 r_2 r_3 = r s^2$$

- In a triangle if a = 36.21, c = 30.4, $\beta = 78^{\circ}10'$, then find angle γ . ix.
- If area of triangle $\Delta = 2437$, a = 79, c = 97 then find angle β . х.
- Show that $r_2 = s \tan \frac{\beta}{2}$ xi.
- A vertical pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that xii. moment?
- Prove that $rr_1r_2r_3 = \Delta^2$ xiii.
- Define angle of Elevation. xiv.
- XV. State any two Law of Cosines.
- Prove that $\Delta = 4Rr \cos{\frac{\alpha}{2}} \cos{\frac{\beta}{2}} \cos{\frac{\gamma}{2}}$ xvi.
- State law of Sine. xvii.
- In triangle $\alpha = 35^{\circ}17'$, $\beta = 45^{\circ}13'$, b = 421 then find a. xviii.
- Find area of triangle in which a = 200, c = 120, $\gamma = 150^{\circ}$ xix.
- If $\gamma = 90^{\circ}$, c = 10, b = 5 find a and α . XX.

xxi. If a = 13, b = 14, c = 15 then find *R*.

- xxii. Prove $r = \frac{\Delta}{s}$
- xxiii. Find area of triangle ABC if a = 18, b = 24, c = 30

xxiv. Prove that
$$R = \frac{abc}{4\Lambda}$$

<u>Chapter#13, 14 (Inverse Trigonometric Functions;</u> <u>Solutions of Trigonometric Equations)</u>

- i. Find the value of $\sin(\cos^{-1}\frac{\sqrt{3}}{2})$
- ii. Define trigonometric equation with one example
- iii. Prove that $2\tan^{-1}A = \tan^{-1}\frac{2A}{1-A^2}$
- iv. Find the solution of equation $secx = -2 \ x \in [0, 2\pi]$
- v. Find the solution of equation $cosecx = -2 \ x \in [0, 2\pi]$
- vi. Solve the equation sinx + cosx = 0
- vii. Show that $\cos(2\sin^{-1} x) = 1 2x^2$

viii. Solve the trigonometric equation
$$cosec^2\theta = \frac{4}{3}$$
 in [0, 2π]

- ix. Find the value of $\tan(\cos^{-1}\frac{\sqrt{3}}{2})$
- x. Find solution of the equation $sinx = -\frac{\sqrt{3}}{2}$ which lies in $[0, 2\pi]$
- xi. Solve $\cot \theta = \frac{1}{\sqrt{3}}$ where $\theta \in [0, 2\pi]$
- xii. Show that $\sin(2\cos^{-1}x) = 2x\sqrt{1-x^2}$
- xiii. Solve the equation 1 + cosx = 0
- xiv. Prove that $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{1}{5} = \tan^{-1}\frac{9}{19}$
- xv. Solve the equation $4\cos^2 x 3 = 0$ where $x \in [0, 2\pi]$
- xvi. Find the solution of equation $cosec\theta = 2 \ \theta \epsilon [0, 2\pi]$
- xvii. Show that $\cos(\sin^{-1} x) = \sqrt{1 x^2}$
- xviii. Show that $\tan(\sin^{-1} x) = \frac{x}{\sqrt{1-x^2}}$
- xix. Find value of $\cos(\sin^{-1}\frac{1}{\sqrt{2}})$

xx. Without using calculator / table, show that
$$2\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{24}{25}$$

- xxi. Without using calculator / table, show that $\cos^{-1}\frac{4}{5} = \cot^{-1}\frac{4}{3}$
- xxii. Define the principal sin function.
- xxiii. Solve the equation $\sin x = \frac{1}{2}$
- xxiv. Find the values of θ , satisfying the equation $2\sin^2\theta \sin\theta = 0$, $\theta \in [0, 2\pi]$

xxv. Show that
$$cos^{-1}(-x) = \pi - cos^{-1}(x)$$

xxvi. Find the value of $\sec\left(\sin^{-1}\left(-\frac{1}{2}\right)\right)$