Important Long Questions Mathematics from Past Papers for Inter Part-I

Chapter#02 (Sets, Functions and Groups)

- Convert $(A \cap B) \cap C = A \cap (B \cap C)$ into logical form and prove by constructing truth table where A, B, C three i. non-empty sets are.
- Prove that $p \lor (\sim p \land \sim q) \lor (p \land q) = p \lor (\sim p \land \sim q)$ ii.
- Prove that all 2×2 non-singular matrices over the real field form a non-abelian group under multiplication. iii.

Chapter#03 (Matrices and Determinants)

- Prove that $\begin{vmatrix} a & b + c & a + b \\ b & c + a & b + c \\ c & a + b & a + c \end{vmatrix} = a^3 + b^3 + c^3 3abc$ If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the value of a and b. Solve the system of linear equation by Cramer's rule: $2x_1 x_2 + x_3 = 8$; $x_1 + 2x_2 + 2x_3 = 6$; $x_1 2x_2 a^2$ i. ii.
- iii. $x_3 = 1$
- Solve the system of linear equation by Cramer's rule: $2x_1 x_2 + x_3 = 5$; $4x_1 + 2x_2 + 3x_3 = 8$; $3x_1 x_2 + 3x$ iv. $4x_2 - x_3 = 3.$

v. Show that
$$\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$$

 $|b+a \ a \ a^2|$

vi. Show that
$$\begin{vmatrix} b + a & a \\ c + b & b & b^2 \\ a + b & c & c^2 \end{vmatrix} = (a + b + c)(a - b)(b - c)(c - a)$$

vii. If
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 2 & -1 \\ 1 & 3 & 2 \end{bmatrix}$$
, show that $A + A^t$ is Symmetric.
viii. Show that $\begin{bmatrix} r\cos \emptyset & 0 & -\sin \emptyset \\ 0 & r & 0 \end{bmatrix} \begin{bmatrix} \cos \emptyset & 0 & -\sin \emptyset \\ 0 & 1 & 0 \end{bmatrix} = rL$

$$\begin{bmatrix} r\sin \phi & 0 & \cos \phi \end{bmatrix} \begin{bmatrix} -r\sin \phi & 0 & r\cos \phi \end{bmatrix}$$

ix. If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
 verify that $(A^{-1})^t = (A^t)^{-1}$

Chapter#04 (Quadratic Equations)

- Find the values of a and b if -2 and 2 are the roots of polynomial equation $x^3 4x^2 + ax + b = 0$. i.
- Solve the system of equations $x^2 5xy + 6y^2 = 0$; $x^2 + y^2 = 45$ Solve the equation $x^2 \frac{x}{2} 7 = x 3\sqrt{2x^2 3x + 2}$ ii.
- iii.
- If α , β are the roots of $x^2 3x + 5 = 0$, form the equation whose roots are $\frac{1-\alpha}{1+\alpha}$ and $\frac{1-\beta}{1+\beta}$ iv.
- Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots if $c^2 = a^2m^2 + b^2$, $a \neq 0$, $b \neq 0$ v.
- Use synthetic division to find the values of p and q if x + 1 and x 2 are the factors of the polynomial vi. $x^3 + px^2 + qx + 6.$
- Show that the roots of $(mx + c)^2 = 4ax$ will be equal, if $c = \frac{a}{m}$; $m \neq 0$ vii.

Chapter#05 (Partial Fractions)

- i.
- Resolve into partial fraction $\frac{x^4}{1-x^4}$ Resolve into partial fractions: $\frac{2x^4}{(x-3)(x+2)^2}$ ii.
- Resolve into partial fractions: $\frac{1}{(x-1)(2x-1)(3x-1)}$ iii.
- Resolve into partial fractions: $\frac{9}{(x+2)^2(x)}$ iv.

v. Resolve
$$\frac{(x-1)}{(x-2)(x+1)^2}$$

Compiled by: M. Usman Rafiq (M.PHIL Mathematics), KIPS College Samundri. 03090752390

Chapter#06 (Sequences and Series)

- Find four numbers in A.P whose sum is 32 and sum of whose squares is 276. i.
- If $1 + 2x + 4x^2 + 8x^3 + \cdots$ show that $x = \left(\frac{y-1}{2y}\right)$. ii.
- iii. The sum of three numbers in A.P is 24 and their product is 440. Find the numbers.
- Obtain the sum of all integers in the 1st 1000 integers which are neither divisible by 5 nor by 2. iv.
- If the H.M and A.M between two numbers are 4 and $\frac{9}{2}$ respectively, find the numbers. v.
- For what value of n, $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the positive geometric mean between a and b. vi.

vii. Find *n*, so that
$$\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$$
 may be the A.M. between *a* and *b*.

- The ratio of the sums of n terms of two series in A.P. is 3n + 2: n + 1. Find the ratio of their 8th terms. viii.
- If three numbers 1,4 and 3 are subtracted from three consecutive terms of an A.P., the resulting numbers are in ix. G.P. find the number if their sum is 21.
- The A.M. of two positive integral numbers exceeds their (positive) G.M. by 2 and their sum is 20, find the х. numbers.
- The sum of an infinite geometric series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series. xi.
- xii.
- Find *n*, so that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the H.M. between *a* and *b*. If the numbers $\frac{1}{2}, \frac{4}{21}$ and $\frac{1}{36}$ are subtracted from the three consecutive terms of a G.P., the resulting numbers are xiii. in H.P. find the numbers if their product is $\frac{1}{27}$.

Chapter#07 (Permutation, Combination, and Probability)

- A card is drawn from a deck of 52 playing card, what is the probability that it is a diamond card or an ace. i.
- Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ ii.
- Find the value of *n* and *r* when ${}^{n-1}C_{r-1}:{}^{n}C_{r}:{}^{n+1}C_{r+1} = 3:6:11$ iii.
- Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^{n}C_r$ iv.
- In how many ways can 8 books including 2 on English be arranged on a shelf in such a way that the English v. books are never together?
- How many 6-digit numbers can be formed from the digits 2,2,3,3,4,4? How many of them will lie between vi. 400,000 and 430,000?
- ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$ vii.

- **Chapter#09 (Fundamentals of Trigonometry)** If $cosec\theta = \frac{m^2+1}{2m}$ and m > 0 ($0 < \theta < \frac{\pi}{2}$), find the value of remaining trigonometric ratios. i.
- Prove the identity: $sin^{6}\theta + cos^{6}\theta = 1 3sin^{2}\theta cos^{2}\theta$ ii.
- Find the values of all trigonometric functions of $\frac{19\pi}{3}$. iii.

If $cot\theta = \frac{5}{2}$ and the terminal arm of the angle is in I-quadrant, find the value of $\frac{3sin\theta + 4cos\theta}{cos\theta - sin\theta}$ iv.

v. Show that
$$\sin^6\theta - \cos^6\theta = (\sin^2\theta - \cos^2\theta)(1 - \sin^2\theta \cos^2\theta)$$

vi. Prove that
$$\frac{\cos\theta + \sin\theta}{\cos\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta} = \frac{\cos\theta}{\cos\theta}$$

rove that $\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} + \frac{\cos \theta}{\cos \theta + \sin \theta} = \frac{1}{1 - 2\sin^2 \theta}$ <u>Chapter#10 (Trigonometric Identities Sum and Difference of Angles)</u>

- If α, β, γ are the angles of triangle *ABC*, prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$ i.
- Find $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$, given that $\tan \alpha = -\frac{15}{8}$ and $\sin \beta = -\frac{7}{25}$ and neither the terminal side of the ii. angle of measure α nor that of β is in the *IV* quadrant. Prove that $\frac{\sin\theta + \sin3\theta + \sin5\theta + \sin7\theta}{\cos\theta + \cos5\theta + \cos7\theta} = tan4\theta$
- iii.
- Reduce $sin^4\theta$ to an expression involving only function of multiples of θ raised to the first power. iv.
- Prove without using calculator $sin19^{\circ}cos11^{\circ} + sin71^{\circ}sin11^{\circ} = \frac{1}{2}$ v.
- Prove that $\frac{2sin\theta sin2\theta}{cos\theta + cos3\theta} = tan2\theta tan\theta$ vi.

Compiled by: M. Usman Rafiq (M.PHIL Mathematics), KIPS College Samundri. 03090752390

- If $sin\alpha = \frac{4}{5}$ and $sin\beta = \frac{12}{13}$ where $\frac{\pi}{2} < \alpha < \pi$ and $0 < \beta < \frac{\pi}{2}$. Show that $sin(\alpha \beta) = \frac{133}{205}$ vii.
- Prove that $cos20^{\circ}cos40^{\circ}cos60^{\circ}cos80^{\circ} = \frac{1}{16}$ viii.
- If α , β , γ are the angles of triangle *ABC*, prove that $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ ix.
- If $\alpha + \beta + \gamma = 180^{\circ}$, show that $cot\alpha cot\beta + cot\beta cot\gamma + cot\gamma cot\alpha = 1$ х.
- $\sin\frac{\pi}{9}\sin\frac{2\pi}{9}\sin\frac{\pi}{2}\sin\frac{4\pi}{9} = \frac{3}{16}$ xi.

Chapter#12 (Application of Trigonometry) Prove that in an equilateral triangle $r: R: r_1 = 1: 2: 3$ Prove that $r_1r_2 + r_2r_3 + r_3r_1 = s^2$

- i.
- ii.
- Prove that $r_3 = stan \frac{\gamma}{2}$ iii.
- Prove that $r = \frac{\Delta}{s}$ with usual notation. iv.
- Show that $r_3 = 4R\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\sin\frac{\gamma}{2}$ v.
- vi.
- Show that $\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} = \frac{a^2 + b^2 + c^2}{\Delta^2}$ The sides of a triangle are $x^2 + x + 1$, 2x + 1, and $x^2 1$. Prove that the greatest angle of the triangle is 120°. vii.
- One side of a triangular garden is 30m. if its two corner angles are $22^{\circ} \frac{1}{2}$ and $112^{\circ} \frac{1}{2}$, find the cost of viii. planting the grass at the rate of Rs. 5 per square meter.
- Prove that $(r_1 + r_2)tan\frac{\gamma}{2} = c$ ix.

Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$ Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$ Prove that $\tan^{-1} \frac{120}{119} = 2 \cos^{-1} \frac{12}{13}$ Prove that $2 \tan^{-1} \frac{2}{3} = \sin^{-1} \frac{12}{13}$ Prove that $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{25} = \cos^{-1} \frac{253}{325}$

- i.
- ii.
- iii.
- iv.
- Prove that $\sin^{-1}\frac{1}{\sqrt{5}} + \cot^{-1}3 = \frac{\pi}{4}$ v.
- Without using table/calculator show that: $\cos^{-1}\frac{4}{5} = \cot^{-1}\frac{4}{3}$ vi.