Compiled by: M. Usman Rafiq (M.PHIL Mathematics), KIPS College Samundri. 03090752390

Important Long Questions Mathematics from Past Papers for Inter Part-II

Chapter#01 (Functions and Limits)

- 1. Evaluate $\lim_{x \to 0} \frac{a^{x}-1}{x} = \log_e a$
- 2. Evaluate $\lim_{\theta \to 0} \frac{1 \cos p\theta}{1 \cos q\theta}$
- 3. Evaluate $\lim_{x \to 0} \frac{\sec x \cos x}{x}$
- 4. Discuss the continuity of f(x) at x = c: $f(x) = \begin{cases} 3x 1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 2x & \text{if } x > 1 \end{cases}$, c = 1
- 5. Find the values of *m* and *n*, so the given function *f* is continues at x = 3. $f(x) = \begin{cases} mx 1 & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$

6. If
$$f(x) = \begin{cases} \frac{\sqrt{2x+5}-\sqrt{x+7}}{x-2}, & x \neq 2\\ k, & x = 2 \end{cases}$$
 find value of k so that f is continues at $x = 2$
Chapter#02 (Differentiation)

- 1. Differentiate w.r.t 'x' $\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$
- 2. Differentiate w.r.t 'x' $\frac{x\sqrt{a+x}}{\sqrt{a-x}}$
- 3. If $y = \sqrt{x} \frac{1}{\sqrt{x}}$, show that $2x\frac{dy}{dx} + y = 2\sqrt{x}$
- 4. Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$
- 5. If $x = a \cos^3 \theta$, $y = b \sin^3 \theta$, show that $a \frac{dy}{dx} + btan\theta = 0$
- 6. Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1}\frac{x}{y}$
- 7. If $x = \sin \theta$, $y = sinm\theta$, show that $(1 x^2)y_2 xy_1 + m^2y = 0$
- 8. If $y = e^x sinx$, show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$ 9. If $y = (\cos^{-1}x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$

10. Show that
$$\cos(x+h) = \cos x - h\sin x - \frac{h^2}{2!}\cos x + \frac{h^3}{3!}\sin x + \cdots$$
 and evaluate $\cos 61^{\circ}$

- 11. Show that $2^{x+h} = 2^x \left\{ 1 + (ln2)h + \frac{(ln2)^2h^2}{2!} + \frac{(ln2)^3h^3}{3!} + \cdots \right\}$
- 12. Find the maximum and minimum value of the equation occurring in the interval $[0,2\pi]$. f(x) = sinx + cosx
- 13. Shoe that $y = \frac{lnx}{x}$ has maximum value at x = e

14. Show that
$$y = x^x$$
 has minimum value at $x = \frac{1}{2}$

Ch#03 (Integration)

- 1. Evaluate the indefinite integral $\int \sqrt{4-5x^2} dx$
- 2. Evaluate $\int \frac{dx}{(1+x^2)^3}$
- 3. Evaluate $\int \frac{dx}{\sqrt{7-6x-x^2}}$
- 4. Evaluate $\int e^{2x} \cos 3x \, dx$

5. Solve
$$\int e^x \left(\frac{1+\sin x}{1+\cos x}\right) dx$$

6. Evaluate
$$\int \frac{2x}{1-\sin x} dx$$

Compiled by: M. Usman Rafiq (M.PHIL Mathematics), KIPS College Samundri. 03090752390

- 7. Evaluate the indefinite integral $\int \sqrt{x^2 a^2} dx$
- 8. Evaluate $\int ln(x + \sqrt{x^2 + 1})dx$
- 9. Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$
- 10. Evaluate $\int x \sin^{-1} x \, dx$
- 11. Evaluate $\int_{\pi/6}^{\pi/2} \frac{\cos x}{\sin x(2+\sin x)} dx$

12. Find the area between the x-axis and curve $y = \sqrt{2ax - x^2}$, where a > 0

13. Evaluate $\int_0^{\pi/4} \cos^4 t \, dt$

14. Evaluate $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$

Chapter#04 (Introduction to Analytic Geometry)

- 1. Find the lines represented by $9x^2 + 24xy + 16y^2 = 0$ and also find measure of the angle between them.
- 2. Find equation of line through intersection of lines x y 4 = 0, 7x + y + 20 and parallel to the line 6x + y 14 = 0
- 3. Find h such that the points A(h, 1), B(2,7), C(-6, -7) are the vertices of right triangle with right angle at vertex A.
- 4. Find equation of two parallel lines perpendicular to 2x y + 3 = 0 such that the product of x-intercept and y-intercept is 3.
- 5. Find the distance between the given parallel lines. Sketch the lines. Also find an equation of the parallel lines lying midway between them. 3x 4y + 3 = 0; 3x 47 + 7 = 0

Chapter#05 (Linear Inequalities and Linear Programming)

1. Graph the feasible region of the linear inequalities and find corner points.

 $2x + 3y \le 18; x + 3y \le 10; x + 4y \le 12$

- 2. Minimize z = 3x + y; subject to the constraints $3x + 5y \ge 15$; $x + 3y \ge 9$; $x, y \ge 0$
- 3. Maximize f(x, y) = x + 3y subject to the constraints $2x + 5y \le 30$; $5x + 4y \le 20$; $x \ge 0, y \ge 0$
- 4. Maximize f(x, y) = 2x + 5y subject to the constraints $2y x \le 8$; $x y \le 4$; $x \ge 0, y \ge 0$
- 5. Graph the feasible region of the linear inequalities and find corner points.

 $x + y \le 5; -2x + y \le 2; x \ge 0, y \ge 0$

Chapter#07 (Vectors)

- 1. Prove that the angle in a semi-circle is a right angle.
- 2. Use vector method to show that $sin(\alpha \beta) = sin\alpha cos\beta cos\alpha sin\beta$
- 3. Find a unit vector perpendicular to the plane containing <u>a</u> and <u>b</u>. also fin the sine of angle between them.

$$\underline{a} = 2\underline{i} - 6j - 3\underline{k}; \ \underline{b} = 4\underline{i} + 3j - \underline{k}$$

- 4. Prove that the line segment joining the mid points of two sides of a triangle is parallel to third side and half as long.
- 5. Prove that the line segment joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.
- 6. Prove that the perpendicular bisector of the sides of a triangle are concurrent.
- 7. Prove that the altitudes of a triangle are concurrent.
- 8. Prove that $\cos(\alpha + \beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$
- 9. Prove that in any triangle $\triangle ABC$.

(i) b = ccosA + acosC; (ii) c = acosB + bcosA

(*iii*)
$$b^2 = c^2 + a^2 - 2cacosB$$
; (*iv*) $c^2 = a^2 + b^2 - 2abcosC$